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PTM Reaction Site A Functional Protein ‘

Acetylation
(PTM)

@ Protein regulators
@ Able to quickly change protein behaviors and functions

Gene expression acetylation glycosylation
Protein regulation || phosphorylation | sumoylation




WLcE-l PTMs Are Not Used Consistently Across Organisms
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@ What could alter the way that PTMs are used across
organisms?

Khoury et al. Proteome-wide post-translational modification statistics
http://selene.princeton.edu/PTMCuration/
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@ Reactive Site: a point of reaction between proteins and
PTMs (lysine for acetylation).

@ Lysine is a specific amino acid that targets PTM
interaction

@ Could reactive site placement interfere with PTM bias?



e Could tRNA Bias Influence PTM Bias?
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@ Bonham-Carter, Oliver, Lotfollah Najjar, and Dhundy Bastola.
“Evidence of a pathway of reduction in bacteria: Reduced
quantities of restriction sites impact trna activity in a trial
set.” Proceedings of the International Conference on
Bioinformatics, Computational Biology and Biomedical
Informatics. ACM, 2013.
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e A Connection Between Variables
tRNAs, AAs and PTM Reaction Sites — PTMs

Functions of Influence

@ AAs form the specific reactive sites where PTMs interact
with protein



el Stresses Influence PTMs
B Nor rain, wind, thunder, fire are my daughters. -Shakespeare (
E—

Introduction

Methods S - - -
~ Cellular R
Conclusions - _\ ]
-
References '\____ o Stress . 7-./_-" P
Thanks To R @ o \-\ .
S e

@ Cellular Stresses: Carbonylation, Free Radicals, Heat
Shock, Microgravity, Saline, and others.
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e Mitochondria (Mt): Cellular Energy Producers

@ Mt proteins: Likely evolved with different stress types to
influence tRNA distributions

@ Is there bias observed in Mt PTM composition?
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One of Our Paper’'s Hypotheses...
@ Mt proteins are likely protected from main stream cellular
stresses.
@ Are there fewer PTMs available to Mt for stress response?
@ Can biases be observed from across organisms (in both Mt
and non-Mt)?
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Results
el Table : The proteomes came from these organisms for our study.
References
Thanks To ‘ No. ‘ Organism ‘ Commonly ‘ Top PTM
1 | Arabidopsis thaliana Plant Glycos
2 | Caenorhabditis elegans Worm Glycos
3 | Canis familiaris Dog Glycos
4 | Danio rerio Fish Glycos
5 | Homo sapiens Human Phospho
6 | Mus musculus Mouse PhosPho
7 | Oryctolagus cuniculus Rabbit Glycos
8 | Rattus norvegicus Rat Glycos
9 | Saccharomyces cerevisiae | Yeast Phospho
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Data: Frequencies of Elements
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PTM type

Acetylation
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@ Collected over Mt and nonMt proteins



Wec--B Three Frequency Equations for Three Questions
@ Composition of PTM content in Mt versus nonMt protein?
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Composition of AA content in Mt versus nonMt protein?

o freq(aminoAcid; ;) =
count(aminoAcid; ;)

N(reactiveSites)

i count(reactiveSite(; ;))

@ Composition of PTM reactive sites in Mt versus nonMt

protein?
count(aminoAcid(; ;)

N Ep—
|Zi:Plrotems Se‘Z(i,j)l

o freq(ReactiveSite(; j)) =

For (i,7) = (element][i], organism[j])
N = size of set

count() function returns number of an element in set of size N
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@ How are the PTM distributions different between the Mt
and non-Mt proteomes? J




ol Mt and non-Mt Networks

B Cacnorhabditis elegans (Worm)
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@ Nodes: PTMs (left) node size is freq magnitude, reactive site (right)

@ Edges: reactive site freq, thickness magnitude of reactive site interactions
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Mt and non-Mt Networks

Danio rerio (Zebra fish)
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@ Nodes: PTMs (left) node size is freq magnitude, reactive site (right)

@ Edges: reactive site freq, thickness magnitude of reactive site interactions
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B Arabidopsis thaliana (plant)
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non-Mt

@ Nodes: PTMs (left) node size is freq magnitude, reactive site (right)

@ Edges: reactive site freq, thickness magnitude of reactive site interactions
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@ Nodes: PTMs (left) node size is freq magnitude, reactive site (right)

@ Edges: reactive site freq, thickness magnitude of reactive site interactions
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A Heatmap Comparison
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@ How are the amino acid distributions different between

the Mt and non-Mt proteomes?
o freq(aminoAcid; j)) =

count(aminoAcid(; ;)

ZN(reactiueSites)

30 count(reactiveSite(; j;))
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@ Amino acids frequencies are similar across related organisms

@ Dark blue values are very close to zero
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@ How are the PTM Reactive Site distributions different
between the Mt and non-Mt proteomes?

count(aminoAcid; ;)
| Zﬁi}iroteins SeQ(i,j) |

o freq(ReactiveSite(; j)) =
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@ Fewer reactive sites in Mt

@ Dark blue values are very close to zero
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\evci=-l Some of the Conclusions
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References Type per PTM

Thanks To Mt Few Few Sparse and
organized

Non-Mt || Many Many Dense,
disorganized

and messy

@ From Hypothesis: Mt proteins have fewer PTMs and
associated reactive sites than non-Mt proteins

@ Future work: To study first effects of stress on protein
reactive sites by observing PTM first-responders.
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